
A Mapping of Recording-based Game Test
Automation Tools

Vinícius Mioto
Universidade Federal do Paraná

Curitiba, Brazil
mioto@ufpr.br

ORCiD: 0000-0003-1343-7183

Fabio Petrillo
École de technologie supérieure - ÉTS Montréal

Montréal, Canada
fabio.petrillo@etsmtl.ca

ORCiD: 0000-0002-8355-1494

Abstract—As the gaming industry grows, there is a greater
need for high-quality, complex games, which requires efficient
and scalable testing methods. This paper maps recording-based
game test automation tools that record and replay user actions
to make testing easier and reduce manual work. We analyzed 20
tools mentioned in industry blogs and grouped them into game-
specific and general-purpose categories. We also evaluated their
compatibility, input simulation features, scripting options, and
integration with game engines.

Our findings indicate that general-purpose tools, the most
frequently mentioned in blog sources, offer broad adaptability
across platforms but are typically limited to user interface and
visual testing. In contrast, game-specific tools provide deeper
integration with game engines, supporting access to in-game
mechanics and making them better suited for testing gameplay
aspects. Our observations intend to conduct industry and aca-
demic efforts toward more reliable, scalable, and cost-effective
approaches to automated game testing.

Index Terms—testing, tools, automation, videogame, digital
games, systematic mapping, gray literature

I. INTRODUCTION

The gaming industry has experienced exponential growth
over the past decades, with projections estimating its worth
at US$300 billion by 2028, driven by rapid technological ad-
vancements and evolving business models in game distribution
and monetization1. Thus developers are tasked with producing
larger, more intricate games that not only meet but exceed
player expectations in terms of performance and quality [1].

To address this demands, extensive work across various
roles, from art design to gameplay mechanics, and perhaps
most critically, in ensuring that the game is thoroughly tested
[2]. Yet, the gaming industry continues to rely heavily on
manual testing, where human testers assess gameplay, identify
bugs, ensure performance, and evaluate overall user experience
[3]. Manual testing, by nature, is time-consuming, prone to
human error, and difficult to reproduce at scale [4].

In this paper, we identify testing automation tools of a
specific approach called “recording-based”, that allows testers
to record actions within the game and replay these actions
for testing. This study explore the tools for game testing
automation, focusing on identifying the available tools and

1https://www.pwc.com/gx/en/issues/business-model-reinvention/outlook/
insights-and-perspectives.html

evaluating their features. By targeting and analyzing blog
articles through a structured selection process, we compiled
a list of tools supporting automated tests with recording-and-
replay. Once we extract a list of tools from the selected blogs,
we analyzed their official documentation to examine the main
features that can be used for video game testing.

The rest of this paper is organized as follows. The Section
II delves into the fundamentals of recording-based testing.
Section III describes the methodology used to identify and
analyze the tools. Section IV shows the acquired list of tools,
followed by Section V that describes the main features of
them. Section VII contains the discussion of the results, while
the Section VIII presents the threats to validity of our study.
Finally, Section IX concludes this paper.

II. RECORDED-BASED TESTING

Testing is one of the steps in the verification process to
ensure the quality and improvement of software [5]. Auto-
mated Testing consists on the use of tools and algorithms
to test various aspects of the application without human
intervention [5], [6]. In video game development the testing
involves primarily manual interactions with the game to check
for technical faults, and also evaluate the overall gaming
experience [2], [3]. Hence, tools and techniques have been
proposed to support the automation of game testing to relieve
testers from time-consuming and repetitive tasks [7].

Albaghajati and Ahmed [8] suggest a comprehensive frame-
work to classify and compare automated game testing ap-
proaches. We will focus on the “scenario-based approach”,
more specific on the record-and-replay category, which the
tools execute tests based on predefined sequences of human
made actions or human-requested actions.

Testers can use scripting-based tools, that are often inte-
grated into the game engine, to automate repetitive tasks and
expand the test coverage without manual intervention. This
tools require the creation of scripts, which need some level of
programming expertise and time to write the code [9].

Specifically, recorded-based tools offer the possibility of
recording player interactions during gameplay, usually these
tools generate the script containing instructions to reproduce
the inputs, so they can be replayed automatically [8], [10],
which might reduce the time and effort needed for test

https://orcid.org/0000-0003-1343-7183
https://orcid.org/0000-0002-8355-1494
https://www.pwc.com/gx/en/issues/business-model-reinvention/outlook/insights-and-perspectives.html
https://www.pwc.com/gx/en/issues/business-model-reinvention/outlook/insights-and-perspectives.html

development, especially in projects with frequent updates or a
vast array of elements to test.

The Venn diagram in Figure 1 illustrates the relationship
between software testing, game testing, and automated testing
tools. The diagram emphasizes that recording tools are a subset
of script-based tools, offering ease of use while still relying on
underlying automation scripts for test execution. Furthermore,
there are script-based and recording tools that can be used for
both general software testing and game testing.

Software
Testing

Automated
Testing

Game
TestingAutomated

Game
Testing

Script-based
tools

Recording
tools

Fig. 1. Venn Diagram - Testing and its tools - A Venn diagram showing the
relationships between Software Testing, Automated Testing, Game Testing,
Automated Game Testing, Script-based tools, and Recording tools, highlight-
ing overlaps in test automation for games.

Due to this overlap of recording-based automation tools in
general software and game-specific testing, our study contains
tools that are designed to work in both scenarios, as detailed
on Section IV. Given the challenges associated with applying
automated testing in video games [2], [3], recording-base tools
intent to provide a solution by ensuring extensive test coverage
in less time.

Albaghajati and Ahmed [8] show that scenario-based tools
aim to achieve four testing objectives, they defined these
objectives as follows:
● Functional Correctness: ensures that the game’s core me-

chanics, player actions, and progression work as intended,
providing a reliable gameplay experience;

● Game Design Correctness: assesses gameplay structure
and balance, verifying that rules are clear, levels acces-
sible, and objects correctly placed to support intended
player experiences.

● Visual Correctness: confirms visual consistency by identi-
fying graphical issues, ensuring accurate animations, and
verifying correct display of UI elements;

● Multiplayer Stability: focuses on reliable and fair mul-
tiplayer interactions, including low-latency connections,
stable servers, and security against exploits.

III. STUDY DESIGN

We aim to adopt a systematic mapping approach to explore
and compare recorded-based game testing tools. To achieve
this, we address the following key research questions:
● RQ1 - What are the recorded-based game test automation

tools?
● RQ2 - What are the main features of the identified tools?

The study employed a multi-phase and systematic search
process to collect a list of tools (see Figure 2), we defined a
iterative process, where the initial data come from 20 blogs
[11]. Therefore, this study aligns with established guidelines
for conducting systematic mapping reviews from the grey
literature [12]. The search was completed on 2024/10/27.

Perform searches using
the key strings

Filter sources based on
the criteria

Search
Engine

Summary
of tools

Extract mentioned tools

List of
tools

Filter scripting or
recording tools

20 sources?
yesno

Filtered
Pool

Initial
pool

1 2

3 4

Fig. 2. Tool selection process - A flowchart illustrating the process of selecting
game testing tools, from performing searches and filtering results, to extracting
and classifying tools for a final list of 20.

Step 1: We started by performing searches on Google to
find blogs that could bring us game test automation tools or
frameworks that allow developers to automate their testing
tasks. The key strings used for the searches were:
● S1 - Video game automated testing tools
● S2 - Game test automation framework
Step 2: We read the blogs articles and filtered them based

on the following inclusion and exclusion criteria:
● Inclusion Criteria

– IC1: blog posts that cite or compare game test
automation tools;

– IC2: blog posts that discuss game test automation
frameworks focused on recording-and-replay;

– IC3: blogs posts that include a review, case studies,
or testimonial of a tool for automating game test;

● Exclusion Criteria
– EC1: blog posts older than 5 years;
– EC2: blog posts not written in English;
– EC3: blog posts about gamification.

We performed the Steps 1 and 2 until we get 20 filtered
blogs that satisfy our criteria, all the selected sources are
included on Table I.

Step 3: In this step, we extracted the tools mentioned in
the blog posts and we got a list of 42 tools. Since the depth
of descriptions provided in the blogs varied, this initial list
required further refinement.

Step 4: We searched for the main website and documenta-
tion of the tools to filter only those that support recording-
based tasks as stated in Section II, this gave us the final list
that contains 20 tools ready for deeper analysis.

Finally, we also examined the official documentation to
analyze the main features of each tool in terms of supporting,

TABLE I
LIST OF BLOG POSTS

Ref Title Source IC1 IC2 IC3
[13] Game Test Automation Tools – A Comprehensive Review and Comparison iXie ✓ ✓

[14] Top 6 Game Testing Tools You Need to Know Test Sigma ✓ ✓

[15] The Top Game Test Automation Tools You Need to Know About iXie ✓

[16] Automated Game Testing Tools: 10 Types Worth Knowing modl.ai ✓ ✓

[17] What Tools do You Need to Automate Video Game Testing? zappletech ✓ ✓

[18] How to Automate Video Game Tests Test Guild ✓ ✓

[19] Game Automation Testing: Things to Consider Before You Go to Market QAble ✓ ✓

[20] Game Testing Automation 101: Basic Tips and Strategies (with Case Studies) VNEXT Global ✓ ✓ ✓

[21] A Practical Guide to Test Automation Tools for Mobile Games TestDevLab ✓ ✓

[22] Level Up Your Game Development: The Power of Game Test Automation T-Plan ✓

[23] Adding test automation to your game development project AltTester ✓

[24] Top 10 Game Testing Tools Every Developer Should Know About KiwiQA ✓ ✓

[25] Video Game Test Automation: Factors to Consider Before Starting iXie ✓

[26] Game Testing Tutorial: A Comprehensive Guide With Best Practices And Examples LambdaTest ✓ ✓ ✓

[27] 10 Best Mobile Game Testing Tools in 2024 HeadSpin ✓

[28] Enhance the performance of mobile games with automation testing QAonCloud ✓ ✓

[29] Automating Gameplay with TestComplete SmartBear ✓

[30] Is Game Automation the Next Generation of Testing? QAble ✓

[31] Appium together with AltTester Unity SDK Medium ✓

[32] Automating Mobile Game Testing Yarsa Labs ✓

user inputs, integrations, scrips generation, and the testing
objectives defined by Albaghajati and Ahmed [8].

IV. RQ1 - WHAT ARE THE RECORDED-BASED GAME TEST
AUTOMATION TOOLS?

Table II contains the list of the 20 tools, mentioned in the
blogs, that support recording-based testing. By checking the
documentations, we notice that there are two categories of
tools: (i) Game-specific tools, and (ii) General-purpose tools,
so we indicate as (GS) the tools that are specifically tailored
for game testing. The table shows that the blogs mentioned
18 tools that can be used for general-purpose software testing
and only 2 tools that are game-specific tools.

TABLE II
MENTIONED TOOLS FOR VIDEO GAME TESTING

ID Tool References #
1 Appium [14], [15], [17]–[22], [24]–[28] 16

[30]–[32]
2 Selenium [14]–[19], [22], [24], [27], [28] 10
3 TestComplete [14]–[17], [19], [20], [22], [24] 10

[27], [29]
4 AltTester (GS) [13], [14], [21], [23], [31], [32] 6
5 GameDriver (GS) [13], [18], [20], [22] 4
6 AirTest 2 [13], [21] 2
7 ZAPTEST [13] 1
8 TestSigma [14] 1
9 BrowserStack [16] 1

10 Ranorex [16] 1
11 Applitools [19] 1
12 Repeato [21] 1
13 Kobiton [21] 1
14 Katalon [21] 1
15 TestRigor [21] 1
16 Perfecto [21] 1
17 TestGrid [21] 1
18 T-Plan Robot [22] 1
19 LambdaTest [26] 1
20 HeadSpin [27] 1

The frequency of these mentions provides a glimpse into the
perceived popularity and adoption within parts of the game
development community. Appium, Selenium, and TestCom-
plete appear on the top 3, showing their recognition among
the selected sources, all of them are general-purpose testing
tools, and they have 10 or more mentions. For instance 16 of
20 blogs (80%) mentioned Appium for video game testing.

Moreover, 14 tools were cited only once each, which
suggests niche use cases or limited awareness. TestSigma
[14], T-Plan [22], LambdaTest [26], and HeadSpin [27] appear
only in the blogs from their own company. AltTeser [23] and
TestComplete (from SmartBear) [29] also have their own blog,
although other blog posts cite them, as shown in the Table II.
These 6 companies maintain a blog as part of a marketing
strategy to compare their tool with others or to sustain a
community with hints, use cases, updates, and other topics
related to their product.

V. RQ2 - WHAT ARE THE MAIN FEATURES OF THE
IDENTIFIED TOOLS?

We collect and organize the main features of the identified
tools to allow easy comparisons of them, through an exam-
ination of the official documentation of these tools. Due to
the recording-based scope of this work, all tools are designed
to test User Interface (UI) with the aim to ensure the correct
interface functionality. Yet, all the selected tools provide the
option to generate testing reports, which is an important
feature for the workflow.

The other features presented more differences for each tool,
and therefore we describe and compare them in the next
subsections.

2Although AirTest can be used for general-software testing, documentation
presents a dedicated section for game testing

A. License, Supported Languages, and Operating Systems

Table III summarizes the licenses of each tool, the supported
languages, and the platform of use. In terms of licensing,
7 tools are classified as open-source software, at least for a
community version. We found 4 tools with Apache License,
2 with MIT license, and 1 with GPL (GNU General Public
License). The other 13 tools have proprietary licenses.

TABLE III
LICENSE, LANGUAGES, AND SUPPORTED PLATFORMS

ID Tool License Language W
in

do
w

s

m
ac

O
S

G
N

U
/L

in
ux

C
lo

ud

1 Appium Apache Multiple ✓ ✓ ✓

2 Selenium Apache Multiple ✓ ✓ ✓

3 TestComplete Proprietary Multiple ✓

4 AltTester GPL Multiple ✓ ✓ ✓

5 GameDriver Proprietary C# ✓ ✓ ✓

6 Airtest Apache Python ✓ ✓ ✓

7 ZAPTEST Proprietary Multiple ✓ ✓ ✓

8 TestSigma Apache Java ✓ ✓ ✓ ✓

9 BrowserStack MIT Multiple ✓ ✓ ✓ ✓

10 Ranorex Proprietary Multiple ✓

11 Applitools Proprietary Multiple ✓

12 Repeato Proprietary JavaScript ✓ ✓

13 Kobiton Proprietary Multiple ✓ ✓ ✓

14 Katalon Proprietary Groovy ✓ ✓ ✓ ✓

15 TestRigor MIT JavaScript ✓ ✓ ✓ ✓

16 Perfecto Proprietary Multiple ✓

17 TestGrid Proprietary Multiple ✓

18 T-Plan Robot Proprietary Java ✓ ✓ ✓

19 LambdaTest Proprietary Multiple ✓

20 HeadSpin Proprietary Multiple ✓

15 13 11 10

We notice that 13 tools support 3 or more programming
languages, we classified them as “multiple” in the fourth
column of Table III. With this feature, developers can write
scripts or even modify the record-generated scripts using their
preferred language, ensuring integration with their workflows.

The right side of the table shows the platform of use, for
instance the 15 tools that are not cloud-only present a desktop
application, such as an integrated development environment
(IDE) and a software development kit (SDK). In this scenario,
Windows is the most supported operating system (OS) for this
applications, with 15 tools in total, followed by macOS and
GNU/Linux, with 13 and 11, respectively.

In addition to that, 10 tools offer the possibility to create
and execute the tests in a cloud environment. They allow the
teams to execute tests in different devices and platforms, by
using emulators or real devices on cloud, so the developers do
not need to use their own infrastructure for testing [21].

B. Testing Platforms

General-purpose software testing tools are designed to work
with a wide range of applications and platforms beyond video
games. Table IV shows that these tools typically feature cross-
platform compatibility. As we can see, 17 tools can be used for

mobile applications testing. Additionally, mobile game testing
is specifically discussed in 5 blogs [19], [21], [27], [28], [32].
There are 16 tools that allow web applications testing, and 12
that support desktop software testing. Only 3 tools are limited
to one specific environment, the other 17 can be used at least
for two platforms.

TABLE IV
SUPPORTED TESTING PLATFORMS AND ENGINES

Platforms Game engines

ID Tool M
ob

ile

W
eb

D
es

kt
op

U
ni

ty

U
nr

ea
l

C
us

to
m

G
od

ot

C
oc

os

E
gr

et

1 Appium ✓ ✓ ✓

2 Selenium ✓

3 TestComplete ✓ ✓ ✓

4 AltTester ✓ ✓

5 GameDriver ✓ ✓ ✓

6 Airtest ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 ZAPTEST ✓ ✓ ✓

8 TestSigma ✓ ✓ ✓

9 BrowserStack ✓ ✓

10 Ranorex ✓ ✓ ✓

11 Applitools ✓ ✓ ✓

12 Repeato ✓

13 Kobiton ✓

14 Katalon ✓ ✓ ✓

15 TestRigor ✓ ✓ ✓

16 Perfecto ✓ ✓

17 TestGrid ✓ ✓ ✓

18 T-Plan Robot ✓ ✓ ✓

19 LambdaTest ✓ ✓ ✓

20 HeadSping ✓ ✓

17 16 12 3 2 2 1 1 1

Differently to general-purpose software testing tools, the
analyzed game-specif tools are designed to work with game
engines. For instance, AltTester is compatible with Unity and
with custom engines, and GameDriver supports Unity, Unreal,
and Godot. AltTester and GameDriver supplement their written
documentation with quickstart videos available on YouTube 34,
allowing users to visually grasp the process and see real-time
demonstrations of how to integrate the tool with engines and
how to create the first automated tests in their own games.

Although we classified AirTest as a general-purpose tool,
it’s documentation shows that beyond the multiple supported
platforms such as mobile, web, and desktop, it shows how to
setup the tool with Unity, Unreal, Cocos2d-x, Cocos-Creator,
and Egrete. The documentation also describes how to setup
AirTest SDK with other engines in a “self-integration” tutorial.

Considering the presented differences, the supported plat-
form or the integration with game engines is an important topic
when choosing a testing tool to incorporate to the developers
workflow [25], [26].

3AltTester Unity SDK Tutorial - Get Started with Unity Test Automation
https://www.youtube.com/watch?v=L4yAgv8Jc8s

4Game Testing Tutorial Series pt 1: Adding GameDriver to your Unity
Project https://www.youtube.com/watch?v=HNajsVdQemY

https://www.youtube.com/watch?v=L4yAgv8Jc8s
https://www.youtube.com/watch?v=HNajsVdQemY

C. Workflow Integrations

We examined the documentation to identify features that fo-
cus on integrations that enhance functionality for development
and testing workflows, we shown them on Table V.

TABLE V
WORKFLOW INTEGRATIONS OF GAME TESTING TOOLS

ID Tool U
se

pl
ug

in
s/

ex
te

ns
io

ns

C
I/

C
D

su
pp

or
t

In
te

gr
at

ed
w

ith
Se

le
ni

um

In
te

gr
at

ed
w

ith
A

pp
iu

m

A
pp

iu
m

-b
as

ed

Se
le

ni
um

-b
as

ed
1 Appium ✓ ✓

2 Selenium ✓ ✓

3 TestComplete ✓ ✓ ✓ ✓

4 AltTester ✓ ✓ ✓

5 Game Driver ✓ ✓ ✓ ✓

6 Airtest ✓ ✓ ✓

7 ZAPTEST ✓ ✓

8 TestSigma ✓ ✓

9 BrowserStack ✓ ✓ ✓ ✓

10 Ranorex ✓ ✓ ✓ ✓

11 Applitools ✓ ✓ ✓ ✓

12 Repeato ✓ ✓

13 Kobiton ✓ ✓ ✓

14 Katalon ✓ ✓ ✓ ✓

15 TestRigor ✓ ✓

16 Perfecto ✓ ✓ ✓ ✓

17 TestGrid ✓ ✓ ✓ ✓

18 T-Plan Robot ✓ ✓ ✓

19 LambdaTest ✓ ✓ ✓ ✓

20 HeadSpin ✓ ✓ ✓ ✓

19 16 13 9 5 2

One of the most frequently mentioned features in the
workflow and integration category is the possibility to use
plugins and extensions with the selected tool. In total, 19 tools
mentioned this possibility in the documentation. We consider
this to be a relevant topic for the usage, as it allows developers
to integrate the selected tool with other tools or frameworks,
so they can overcome a limitation or include new automation
functionalities in the current workflow [27]. For example,
Lovreto et al. [33] conducted a study using Appium combined
with OpenCV5 to perform testing in 16 mobile games available
on Google Play Store, such as Sonic Boom, Moto Rider GO,
Ludo King, Spider Card, etc. OpenCV was used to find and
interact with UI elements like buttons, characters, items, and
enemies through image recognition.

Another included feature for the workflow, mentioned by 16
tools, is the Continuous Integration/Continuous Deployment
(CI/CD) support which enables a more efficient and stream-
lined development process, so the issues can be flagged and

5OpenCV (Open Source Computer Vision Library) is an open source
computer vision and machine learning software library.

resolved quickly, promoting better collaboration and work-
flows [15], [16], [31]. The cited platforms for this feature are
GitHub Actions, GitLab CI/CD, Jenkins, and Azure DevOps
(Pipelines), they provide functionalities that streamline builds,
testing, and deployment.

The last four features of the workflow integration category
were included on Table V due the number of citations to
Selenium and Appium in the documentations. We notice
that 13 tools offer integration with Selenium, and 9 tools
offer integration with Appium. Yet, 5 tools are based on
Appium, and 2 are based on Selenium. Therefore Selenium’s
and Appium’s features are available in the tools that allows
integrations or are build on top of them. This highlight the
importance of both tools for testing, and give us more reasons
for they to be the most cited tools on the blogs as well.

Tools based on or integrated with Appium and Selenium
interact with UI components in the same way as these frame-
works. Appium primarily uses component locators, such as
resource IDs for Android and iOS class chains, while Selenium
interacts through the Document Object Model (DOM). Tools,
like ZAPTEST and AirTest use image recognition techniques
for locating buttons, menus, input fields, and other items [13],
[21]. Other tools did not mention in the documentation how
exactly they interact with UI components.

D. User Inputs and Scripts Generation

We analyzed the features related to the types of user inputs
simulations, which is used for interacting with UI components
during the testing, and also available methods for creating the
tests, beyond recording [26]. These tools are summarized on
Table VI.

Although every tool can interact with UI components, they
differ in the user inputs simulations aspect. Thus, the supported
inputs is relevant for game testing aspects [18]. Inputs like
mouse (e.g. clicking, holding, dragging and dropping, etc.)
and touch (e.g. tapping, swiping, pinching, etc.) are the most
common, with 18 tools. Followed by keyboard inputs (e.g. key
down, holding, and sequence of keys) with 16 tools, we did
not assign this feature in the table for the tools that only allow
to enter key strings on text fields such as forms. Joystick inputs
are supported only by the game-specif tools, and GameDriver
also allows extended reality (XR) inputs.

Besides the actions recording and manual scripting, we
detected 15 tools that allow the user to use the GUI to create
test cases. This feature, usually called “no-code”, is common
in tools that have an IDE or a web-app that offer a way to
create tests by dragging and dropping commands to structure
the sequence of test actions [21]. The documentation highlights
that this feature can save time when creating tests and is
helpful for those who do not have expertise in programming.

There are 9 tools labeled as “low-code”, they also cater to
users with minimal programming experience, considering that
it is easy and friendly to create and understand the test scripts,
they usually provide writing the test with key-words (e.g. enter
menu, click button, press play, etc.). Additionally, ZAPTEST,
TestSigma, testRigor, and LambdaTest are tools that allows

TABLE VI
USER INPUTS AND SCRIPTS GENERATION OF GAME TESTING TOOLS

Inputs simulations Scripting

ID Tool M
ou

se
/T

ou
ch

K
ey

bo
ar

d

Jo
ys

tic
k

X
R

U
si

ng
G

U
I

U
si

ng
lo

w
-c

od
e

U
si

ng
L

L
M

1 Appium ✓ ✓

2 Selenium ✓ ✓

3 TestComplete ✓ ✓ ✓ ✓

4 AltTester ✓ ✓ ✓

5 GameDriver ✓ ✓ ✓ ✓

6 Airtest ✓ ✓ ✓

7 ZAPTEST ✓ ✓ ✓ ✓

8 TestSigma ✓ ✓ ✓

9 BrowserStack ✓ ✓ ✓ ✓

10 Ranorex ✓ ✓ ✓ ✓

11 Applitools ✓ ✓ ✓ ✓

12 Repeato ✓ ✓

13 Kobiton ✓ ✓

14 Katalon ✓ ✓ ✓ ✓

15 TestRigor ✓ ✓ ✓ ✓ ✓

16 Perfecto ✓ ✓ ✓ ✓

17 TestGrid ✓ ✓ ✓

18 T-Plan Robot ✓ ✓ ✓ ✓

19 LambdaTest ✓ ✓ ✓ ✓

20 HeadSpin ✓ ✓

19 16 2 1 16 9 4

the user to create the test with plain english, they are powered
by large language models (LLMs), so the developers must
specify the test cases with a natural language prompt or they
be assisted by an AI model to write the scripts [21].

VI. TOOLS AND TESTING OBJECTIVES ACHIEVEMENTS

Table VII compile the achievements of the testing objectives
for each tool, as defined by described on Section II and defined
by Albaghajati and Ahmed [8].

A. Visual Correctness and Multiplayer Stability

We noticed that 16 tools provide support for sisual cor-
rectness testing, a method used to ensure that the graphical
elements and UI components of a game appear as expected
on different screens, devices, and resolutions. We highlight
the importance of visual aspects in game development, where
aesthetics and visual consistency play a significant role in
the player’s experience [27]. As mentioned in Section V,
the ability to integrate tools with other frameworks, such as
Appium with OpenCV [33], might be useful to test visual
aspects, although it requires more steps to setup the tools and
the testing environment.

Regarding the game-specif tools, AltTester’s documenta-
tion does not mention any feature related to visual testing.
GameDriver’s documentation, show one simple example of
visual aspects by verifying the color of a component is the
same as a RGB code (red, green, and blue values). In terms of

TABLE VII
TOOLS AND TESTING OBJECTIVES ACHIEVEMENTS

ID Tool Fu
nc

tio
na

l
co

rr
ec

tn
es

s

V
is

ua
l

co
rr

ec
tn

es
s

M
ul

tip
la

ye
r

st
ab

ili
ty

G
am

e
de

si
gn

co
rr

ec
tn

es
s

1 Appium ✓

2 Selenium ✓

3 TestComplete ✓ ✓ ✓

4 AltTester ✓ ✓ ✓

5 Game Driver ✓ ✓ ✓

6 Airtest ✓ ✓ ✓ ✓

7 ZAPTEST ✓ ✓ ✓

8 TestSigma ✓ ✓ ✓

9 BrowserStack ✓ ✓ ✓

10 Ranorex ✓ ✓

11 Applitools ✓ ✓

12 Repeato ✓ ✓

13 Kobiton ✓ ✓ ✓

14 Katalon ✓ ✓ ✓

15 TestRigor ✓ ✓ ✓

16 Perfecto ✓ ✓ ✓

17 TestGrid ✓ ✓ ✓

18 T-Plan Robot ✓ ✓

19 LambdaTest ✓ ✓ ✓

20 HeadSpin ✓ ✓ ✓

20 16 14 3

comparison, the other tools are equipped with image recogni-
tion features, which allow them to detect visual discrepancies.

Parallel executions are supported by 14 tools. They allow
tester to simulate real-world multiplayer environments by eval-
uating how multiple users or devices interact with the game
server concurrently. For example, the automation approach
for Unity-based multiplayer card games, introduced by Sajid
Shaik and Pragna P. Pal [34], addresses the challenges associ-
ated with unpredictable game states in a multi-player context.
This approach leverages AirtestIDE manager to identify and
customize game elements like cards and regions dynamically.

B. Functional Correctness and Game Design Correctness

All 20 tools support functional correctness testing to some
extent. However, general-purpose tools are limited to test-
ing UI elements, such as buttons, menus, forms, and basic
gameplay interactions. Tibell and Kholi [35] conducted a
comparative study of Selenium and TestComplete, where they
designed and implemented four test cases for an e-commerce
application and a web-based game. The game testing cases
included verifying the play button, game startup, and character
movements (by pressing arrow keys). The authors highlight
the limitations of Selenium which does not provide access to
game-level objects due to its reliance on DOM-based structure.
Tuovenen et al. introduced MAuto, an automated mobile
game testing tool that records and replays user interactions

on Android games using the Appium and computer vision
techniques. MAuto was tested on the mobile game Clash of
Clans, it successfully replayed the recorded tutorial actions in
the game.

Game-specific tools enhance functional correctness testing
by providing direct access to game-level objects, functions,
and properties within the game engine. This deeper integration
enables testers to load specific scenes, locate and manipulate
in-game components, and simulate complex events to verify
outcomes directly [18]. With this capability, game-specific
tools allow comprehensive testing of intricate mechanics,
including elements like acceleration, velocity, character move-
ment, and AI responses, ensuring that core game actions and
processes operate as intended.

Due to the lack of integration with the game engine, general-
purpose tools cannot access to gameplay structure or rules,
thus they are not suited for testing game design correctness. In
contrast, game-specific tools like AltTester, GameDriver, and
AirTest support this type of test by providing deep integration
within the game engine, allowing testers to interact directly
with game rules, level layouts, and object placements. These
tools enable precise control over various game configurations,
such as scene navigation, camera angles, and input handling,
which are essential for assessing gameplay balance and struc-
tural coherence [21], [32]. Additionally, their documentation
includes tutorials and examples with pre-made games, making
it more intuitive for testers to evaluate game-specific scenarios
and design elements directly within the game environment.

VII. DISCUSSION

Although the general-purpose software testing tools are
compatible with different platforms, they still focus on specific
environments that might not work for complex game projects.
For instance, Repeato and Kobiton work only on mobile
devices, and Selenium is limited to web applications. As a
result, these tools are not well-suited for integration with
game engines and are more commonly restricted to web-based
or mobile games. Moreover, general-purpose tools, except
Airtest, require additional setup for game environments, as
the documentation does not have a dedicated section for
integrating with video game projects or examples of use cases
for game testing [27]. Game-specific tools offer comprehensive
documentation dedicated to game-testing tasks, making them
easier to adopt. Additionally, they allow game developers to
benefit from community support and efficient troubleshooting
due to their focus on video games [14].

Recording-based game test automation tools can offer sig-
nificant advantages to video game quality assurance (QA)
teams for automating repetitive UI tasks by recording and
replaying gameplay scenarios [8], [28]. This automation saves
time compared to manual testing, reduces human error, and
ensures consistent execution across multiple testing sessions
[28]. These tools are versatile and can be broadly applied
across different game types and genres, enhancing the adapt-
ability and effectiveness of the testing process [8]. Never-
theless, these tools can be costly to maintain, as updates to

game mechanics or UI often necessitate re-recording or script
adjustments, adding to the maintenance burden [16], [27].

In this context, we also highlight the blogs [13], [16],
[19], [30] that mention testing with AI-based models, such
as machine learning and reinforcement learning, to support
specifically the gameplay test. In fact, game companies like
Electronic Arts (EA), UBISOFT, KING, and Activision in-
vested in this approach, their results show how the models
can adapt to different scenarios during the gameplay and
enhance the test coverage [36]–[38]. However, the demand for
computational resources, specialized expertise, and substantial
time investment is significantly high.

VIII. THREATS TO VALIDITY

This study faces threats to validity that may influence the
comprehensiveness and accuracy of our findings. Primarily,
selection bias is a concern, as we sourced our initial list of
tools from blog articles, which may emphasize more popular
or recently updated tools. In addition to that, there are 6 blogs
included in our work that are written by the same companies
that create the tools, as discussed on Section IV.

Another threat to validity is that even official documenta-
tion can vary in depth and focus, particularly since 18 are
designed for general software testing rather than specifically
for video games. Hence, the documentation may emphasize
web, mobile, or desktop applications rather than the unique
requirements of game testing, potentially impacting the quality
of information related to game-specific features. We addressed
this by focusing on widely applicable features, though we
acknowledge that some specialized tools and features may
exist outside the scope of this study.

IX. CONCLUSION

This study maps recording-based game test automation
tools, focusing on their features, platform compatibility, and
suitability for game-specific requirements. We compiled a set
of tools that offer diverse functionalities for automated game
testing. Our mapping reveals the main options available to de-
velopers seeking to implement automation in their workflows,
according to blog posts. The systematic approach used in this
study also brought a comparative analysis of the features for
game testing that these tools offer.

While many general-purpose automation tools can be used
for game testing, they are typically limited to validating basic
UI elements like menus, buttons, and forms. In contrast, game-
specific tools such as AltTester and GameDriver enhance test-
ing by integrating deeply with game engines, which allows QA
teams to more effectively testing in-game objects, supporting
more thorough gameplay testing beyond what general-purpose
tools can achieve.

This study provides insights into recording-based test au-
tomation tools, detailing their main features and contributions
to game testing. By mapping the landscape of these tools
and offering a comparison, it serves as a resource for game
developers seeking to implement or enhance automation in
their testing workflows.

Future work may focus on the continued evaluation of these
tools with a survey of game QA practitioners. The survey can
generate new results to evaluate the features and usage of the
tools and to understand if they really address the demands of
video game testing. Moreover, future work may concentrate
on the potential for new solutions explicitly tailored for game
testing.

ACKNOWLEDGEMENTS

This research was supported by Mitacs (Canada) and Fun-
dação Araucária (Brazil) through the Globalink Research
Internship program. Their support made this international
research opportunity possible, fostering collaboration between
their countries. We sincerely thank both organizations for their
commitment to advancing research and education.

REFERENCES

[1] G. C. Ullmann, C. Politowski, Y.-G. Guéhéneuc, and F. Petrillo,
“What makes a game high-rated? towards factors of video game
success,” in Proceedings of the 6th International ICSE Workshop
on Games and Software Engineering: Engineering Fun, Inspiration,
and Motivation, ser. GAS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 16–23. [Online]. Available:
https://doi.org/10.1145/3524494.3527628

[2] C. Politowski, F. Petrillo, and Y.-G. Guéhéneuc, “A survey of
video game testing,” in 2021 IEEE/ACM International Conference on
Automation of Software Test (AST). IEEE Computer Society, May
2021, pp. 33–36. [Online]. Available: https://www.computer.org/csdl/
proceedings-article/ast/2021/356700a090/1tB7rABhRDO

[3] C. Politowski, Y.-G. Guéhéneuc, and F. Petrillo, “Towards automated
video game testing: still a long way to go,” in Proceedings of the 6th
International ICSE Workshop on Games and Software Engineering:
Engineering Fun, Inspiration, and Motivation, ser. GAS ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p.
37–43. [Online]. Available: https://doi.org/10.1145/3524494.3527627

[4] C. Politowski, F. Petrillo, G. C. Ullmann, and Y.-G. Guéhéneuc,
“Game industry problems: An extensive analysis of the gray literature,”
Information and Software Technology, vol. 134, p. 106538, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584921000252

[5] K. Naik and P. Tripathy, Software Testing and Quality Assurance: Theory
and Practice, 2nd ed. Wiley Publishing, 2018.

[6] V. Garousi and M. V. Mäntylä, “When and what to automate in
software testing? a multi-vocal literature review,” Information and
Software Technology, vol. 76, pp. 92–117, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584916300702

[7] R. Coppola, T. Fulcini, and F. Strada, “Know your bugs: A survey of
issues in automated game testing literature,” in 2024 IEEE Gaming,
Entertainment, and Media Conference (GEM), 2024, pp. 1–6.

[8] A. Albaghajati and M. Ahmed, “Video game automated testing ap-
proaches: An assessment framework,” IEEE Transactions on Games,
vol. 15, no. 1, pp. 81–94, 2023.

[9] M. Ostrowski and S. Aroudj, “Automated regression testing within video
game development,” GSTF Journal on Computing (JoC), vol. 3, 08 2013.

[10] J. Hernández Bécares, L. Costero Valero, and P. P. Gómez Martín,
“An approach to automated videogame beta testing,” Entertainment
Computing, vol. 18, pp. 79–92, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1875952116300234

[11] A. Rainer and A. Williams, “Using blog articles in software engineering
research: Benefits, challenges and case–survey method,” in 2018 25th
Australasian Software Engineering Conference (ASWEC), 2018, pp.
201–209.

[12] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, vol. 106, pp.
101–121, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0950584918301939

[13] iXie. (2023) Game test automation tools – a comprehensive review
and comparison. [Online]. Available: https://www.ixiegaming.com/blog/
comprehensive-review-game-test-automation-tools/

[14] T. Sigma. (2024) Top 6 game testing tools you need to know. [Online].
Available: https://testsigma.com/blog/game-testing-tools/

[15] iXie. (2023) The top game test automation tools you need to
know about. [Online]. Available: https://www.ixiegaming.com/blog/
the-top-game-automation-tools/

[16] modl.ai. (2024) Automated game testing tools: 10 types worth knowing.
[Online]. Available: https://modl.ai/automated-game-testing-tools/

[17] zappletech. (2021) What tools do you need
to automate video game testing? [Online].
Available: https://zapple.tech/blog/test-automation-frameworks/
what-tools-do-you-need-to-automate-video-game-testing/

[18] T. Guild. (2020) How to automate video game tests. [Online]. Available:
https://testguild.com/automate-video-games/

[19] QAble. (2023) Game automation testing: Things to consider before
you go to market. [Online]. Available: https://www.qable.io/blog/
game-automation-testing

[20] V. Global. (2023) Game testing automation 101: Basic tips and
strategies (with case studies). [Online]. Available: https://vnextglobal.
com/category/blog/game-testing-automation-101-tips-case-studies

[21] TestDevLab. (2024) A practical guide to test automation tools for
mobile games. [Online]. Available: https://www.testdevlab.com/blog/
a-practical-guide-to-test-automation-tools-for-mobile-games

[22] T-Plan. (2024) Level up your game development: The power of
game test automation. [Online]. Available: https://www.t-plan.com/
level-up-your-game-automation/

[23] AltTester. (2024) Adding test automation to your game
development project. [Online]. Available: https://alttester.com/
adding-test-automation-to-your-game-development-project/

[24] KiwiQA. (2024) Top 10 game testing tools every developer
should know about. [Online]. Available: https://www.kiwiqa.com.au/
top-10-game-testing-tools/

[25] iXie. (2023) Video game test automation: Factors to consider
before starting. [Online]. Available: https://www.ixiegaming.com/blog/
factors-of-game-test-automation-to-consider/

[26] LambdaTest. (2023) Game testing tutorial: A comprehensive guide
with best practices and examples. [Online]. Available: https://www.
lambdatest.com/learning-hub/game-testing

[27] HeadSpin. (2024) 10 best mobile game testing tools in 2024. [Online].
Available: https://www.headspin.io/blog/best-mobile-game-testing-tools

[28] QAonCloud. (2023) Enhance the performance of mobile games with
automation testing. [Online]. Available: https://www.qaoncloud.com/
blog/automation-testing-for-mobile-games

[29] SmartBear. (2024) Automating gameplay with test-
complete. [Online]. Available: https://smartbear.com/blog/
automating-gameplay-with-testcomplete/

[30] QAble. (2024) Is game automation the next genera-
tion of testing? [Online]. Available: https://www.qable.io/blog/
is-game-automation-the-next-generation-of-testing

[31] Medium. (2023) Appium together with alttester
unity sdk. [Online]. Available: https://www.headspin.io/blog/
unity-test-framework-for-running-automated-testing

[32] Y. Labs. (2023) Automating mobile game testing. [Online]. Available:
https://blog.yarsalabs.com/mobile-game-testing/

[33] G. Lovreto, A. T. Endo, P. Nardi, and V. H. S. Durelli, “Automated
tests for mobile games: An experience report,” in 2018 17th Brazilian
Symposium on Computer Games and Digital Entertainment (SBGames),
2018, pp. 48–488.

[34] P. Pal and S. Shaik, “Automation approach for unity based
multi-player card game,” Jun. 2021. [Online]. Available: http:
//dx.doi.org/10.36227/techrxiv.14806149.v1

[35] S. Tibell and M. Kholi, “Choosing the right automated ui testing tool :
- a comparative study of selenium and testcomplete,” p. 55, 2023.

[36] J. Bergdahl, C. Gordillo, K. Tollmar, and L. Gisslén, “Augmenting
automated game testing with deep reinforcement learning,” in 2020 IEEE
Conference on Games (CoG), 2020, pp. 600–603.

[37] ommy Thompson. (2020) The secret ai testers inside tom clancy’s the
division. [Online]. Available: https://www.gamedeveloper.com/design/
the-secret-ai-testers-inside-tom-clancy-s-the-division

[38] S. F. Gudmundsson, P. Eisen, E. Poromaa, A. Nodet, S. Purmonen,
B. Kozakowski, R. Meurling, and L. Cao, “Human-like playtesting with
deep learning,” in 2018 IEEE Conference on Computational Intelligence
and Games (CIG), 2018, pp. 1–8.

https://doi.org/10.1145/3524494.3527628
https://www.computer.org/csdl/proceedings-article/ast/2021/356700a090/1tB7rABhRDO
https://www.computer.org/csdl/proceedings-article/ast/2021/356700a090/1tB7rABhRDO
https://doi.org/10.1145/3524494.3527627
https://www.sciencedirect.com/science/article/pii/S0950584921000252
https://www.sciencedirect.com/science/article/pii/S0950584921000252
https://www.sciencedirect.com/science/article/pii/S0950584916300702
https://www.sciencedirect.com/science/article/pii/S1875952116300234
https://www.sciencedirect.com/science/article/pii/S1875952116300234
https://www.sciencedirect.com/science/article/pii/S0950584918301939
https://www.sciencedirect.com/science/article/pii/S0950584918301939
https://www.ixiegaming.com/blog/comprehensive-review-game-test-automation-tools/
https://www.ixiegaming.com/blog/comprehensive-review-game-test-automation-tools/
https://testsigma.com/blog/game-testing-tools/
https://www.ixiegaming.com/blog/the-top-game-automation-tools/
https://www.ixiegaming.com/blog/the-top-game-automation-tools/
https://modl.ai/automated-game-testing-tools/
https://zapple.tech/blog/test-automation-frameworks/what-tools-do-you-need-to-automate-video-game-testing/
https://zapple.tech/blog/test-automation-frameworks/what-tools-do-you-need-to-automate-video-game-testing/
https://testguild.com/automate-video-games/
https://www.qable.io/blog/game-automation-testing
https://www.qable.io/blog/game-automation-testing
https://vnextglobal.com/category/blog/game-testing-automation-101-tips-case-studies
https://vnextglobal.com/category/blog/game-testing-automation-101-tips-case-studies
https://www.testdevlab.com/blog/a-practical-guide-to-test-automation-tools-for-mobile-games
https://www.testdevlab.com/blog/a-practical-guide-to-test-automation-tools-for-mobile-games
https://www.t-plan.com/level-up-your-game-automation/
https://www.t-plan.com/level-up-your-game-automation/
https://alttester.com/adding-test-automation-to-your-game-development-project/
https://alttester.com/adding-test-automation-to-your-game-development-project/
https://www.kiwiqa.com.au/top-10-game-testing-tools/
https://www.kiwiqa.com.au/top-10-game-testing-tools/
https://www.ixiegaming.com/blog/factors-of-game-test-automation-to-consider/
https://www.ixiegaming.com/blog/factors-of-game-test-automation-to-consider/
https://www.lambdatest.com/learning-hub/game-testing
https://www.lambdatest.com/learning-hub/game-testing
https://www.headspin.io/blog/best-mobile-game-testing-tools
https://www.qaoncloud.com/blog/automation-testing-for-mobile-games
https://www.qaoncloud.com/blog/automation-testing-for-mobile-games
https://smartbear.com/blog/automating-gameplay-with-testcomplete/
https://smartbear.com/blog/automating-gameplay-with-testcomplete/
https://www.qable.io/blog/is-game-automation-the-next-generation-of-testing
https://www.qable.io/blog/is-game-automation-the-next-generation-of-testing
https://www.headspin.io/blog/unity-test-framework-for-running-automated-testing
https://www.headspin.io/blog/unity-test-framework-for-running-automated-testing
https://blog.yarsalabs.com/mobile-game-testing/
http://dx.doi.org/10.36227/techrxiv.14806149.v1
http://dx.doi.org/10.36227/techrxiv.14806149.v1
https://www.gamedeveloper.com/design/the-secret-ai-testers-inside-tom-clancy-s-the-division
https://www.gamedeveloper.com/design/the-secret-ai-testers-inside-tom-clancy-s-the-division

	Introduction
	Recorded-Based Testing
	Study Design
	RQ1 - What are the recorded-based game test automation tools?
	RQ2 - What are the main features of the identified tools?
	License, Supported Languages, and Operating Systems
	Testing Platforms
	Workflow Integrations
	User Inputs and Scripts Generation

	Tools and Testing Objectives Achievements
	Visual Correctness and Multiplayer Stability
	Functional Correctness and Game Design Correctness

	Discussion
	Threats to validity
	Conclusion
	References

